

AMPLIFY-7P Phase 2: T cell responses induced by lymph node-targeted amphiphile therapeutic cancer vaccine in patients with KRAS mutated pancreatic ductal adenocarcinoma

Lisa K. McNeil¹, James R. Perry¹, Julia P. Snyder¹, Xavier Cabana-Puig¹, Martin Maiers², Thian Kheoh¹, Esther Welkowsky¹, Christopher M. Haqq¹, and Peter C. DeMuth¹

¹Elicio Therapeutics, Boston, MA

²CIBMTR (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN

APC Activation

T Cell Activation

Effector function

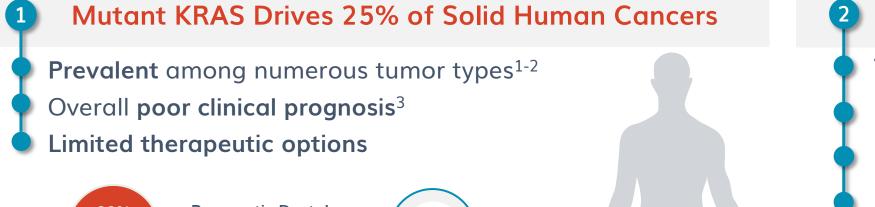
Expansion

Persistence

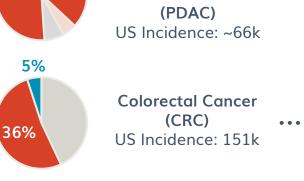
Phenotype

Endpoints

Exploratory: Immunogenicity


ClinicalTrials.gov Identifier: NCT05726864

Abstract 1317



Why Target mutated KRAS with Therapeutic Immunotherapy?

KRAS mutant NRAS mutant

2 Mutant KRAS is a Promising Tumor Antigen

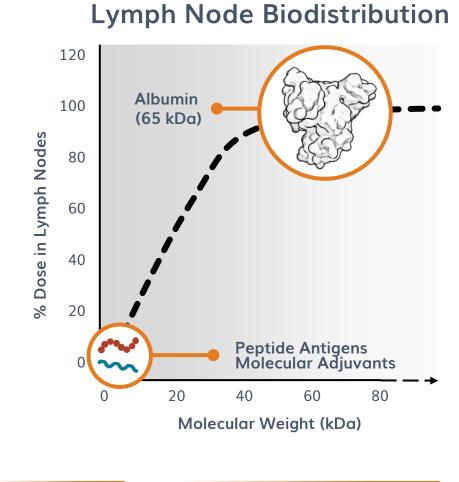
Truncal: mutations occur early, expressed uniformly in all tumor cells **Driver:** mKRAS signaling is required for tumor growth and survival

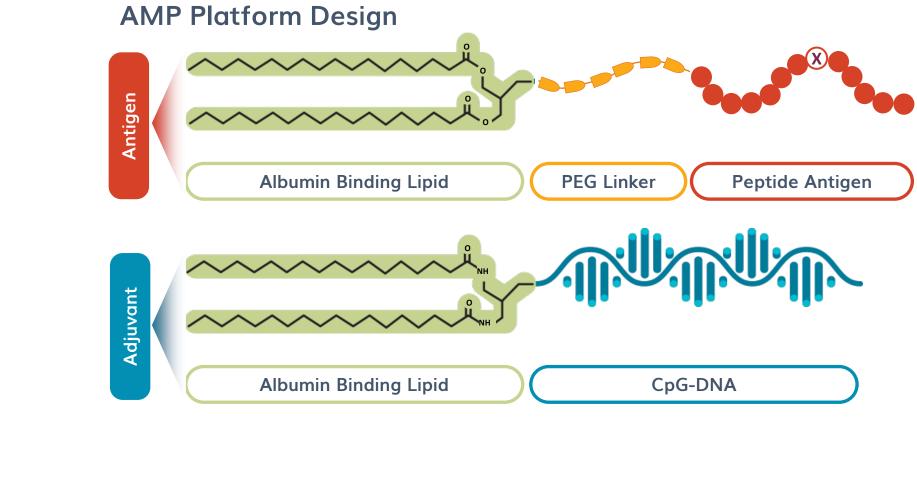
Highly prevalent: involved in ~25% of solid tumors¹⁻²

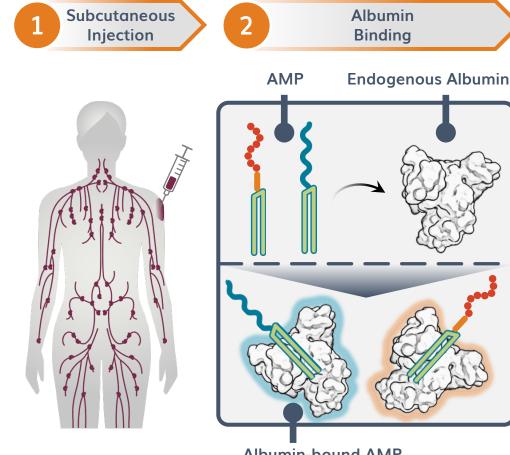
Public neoantigen: not centrally tolerized, cognate TCRs present in naïve

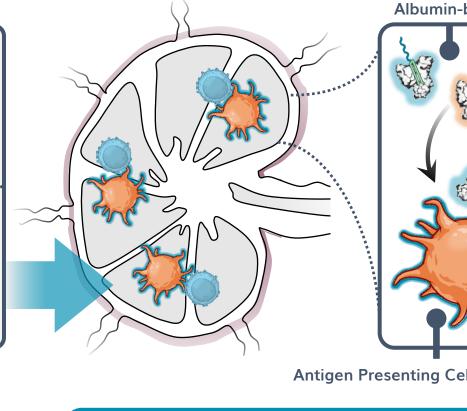
Promiscuous HLA presentation: off-the-shelf use in diverse patient population⁶⁻⁸ Demonstrated Clinical MOA: 88% reduction in risk of progression or death in patients with ELI-002 2P induced mKRAS-specific T cell responses above 9.17x threshold with mOS of 28.9 months and mRFS of 16.3 months^{9,13-14}

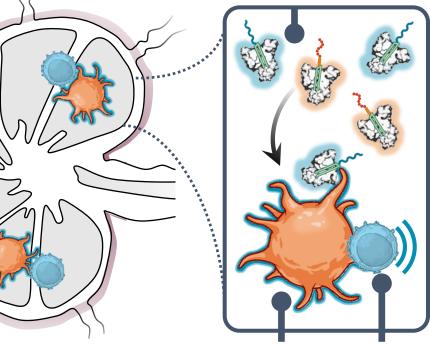
Multi-targeting potential: recognition of clonal and subclonal mKRAS variants to

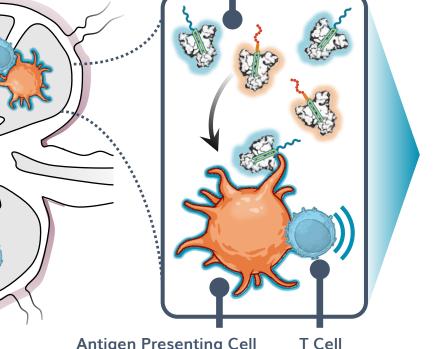

The AMP-Platform: Enhanced Lymph Node Delivery

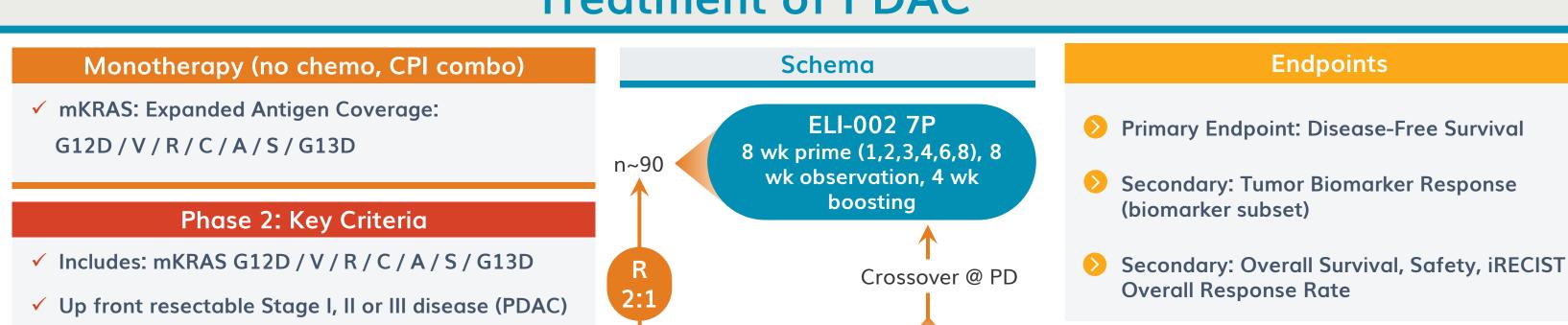

- Smart trafficking to the lymph nodes after subcutaneous dosing demonstrates immune responses with increased magnitude, function, and
- Designed to take advantage of potent lymph node immune mechanisms, including activation of innate and adaptive immune cells, antigenspreading, and improved tumor T cell trafficking / infiltration




Mechanism


Action





Randomized, Controlled Phase 2 Study Ongoing for Adjuvant **Treatment of PDAC**

- ✓ Complete R0/R1 resection
- Radiographic NED status within 6 months following completion of locoregional treatment ✓ MRD agnostic (biomarker +/- included)
- - 4.9 mg Amph-Peptides 7P + 10.0 mg Amph-CpG-7909 (6 dose priming series over an 8-week period comprised of one dose weekly for the first 4 weeks, followed by one dose every 2 weeks over the second 4 weeks, a 2 month no dose period, then a booster period with one dose weekly over 4 weeks)

N=144 pts, 24 Enrolling U.S. Sites

Observation: SOC

IDMC recommended that the Phase 2 trial continue to final analysis without modifications and confirmed the favorable safety profile of ELI-002 7P.

References

Dosing

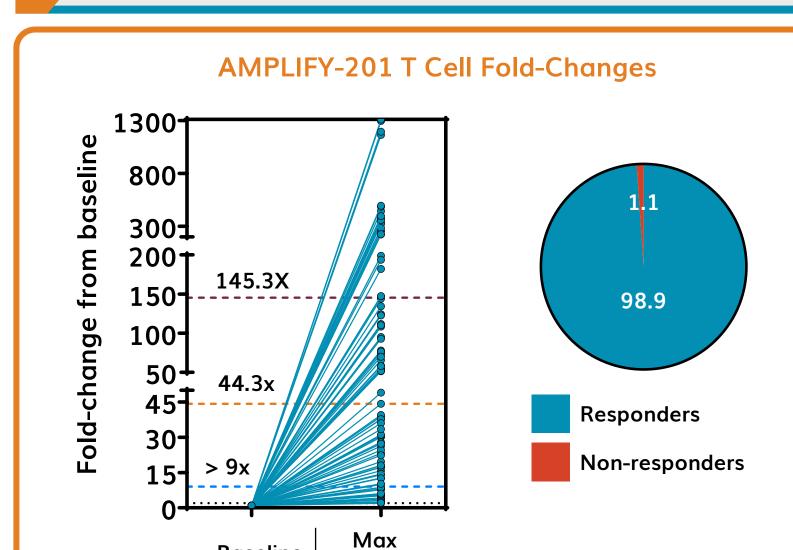
Safety

- 3. Siegel RL, et al. Cancer J. Clin. 2021; 71(1): 7-33 4. Leidner R, et al. **NEJM**. 2022; 386(22): 2112-2119
- 1. Bianken A. et al. **Nature**. 2012: 491(7424): 399-405 2. Prior IA, et al. Cancer Research. 2012; 72(10): 2457-6. Bear AS, et al. **Nat. Commun**. 2021; 12(1): s41467-021-7. Carbone DP, et al. **J Clin Oncol**. 2005; 23(22): 5099-5107 1410
- 5. Tran E, et al. **NEJM**. 2016; 375(23): 2255-2262
- 10. Awad MM, et al. Cancer Cell. 2022; 40(9): 1010-1026 11. Liu H, et al. **Nature**. 2014; 507: 519-522
 - 12. Moynihan KD, et al. Nature Medicine. 2016; 22(12): 1402 13. Devoe C, et al. J Clin Oncol. 2024; 42 (16_suppl): 2636-2636 8. Palmer CD, et al. Br. J. Cancer 2020; 122(7): 971-977 14. Wainberg, O'Reilly, et al. Nature Medicine.

Direct Ex vivo T cell Analysis

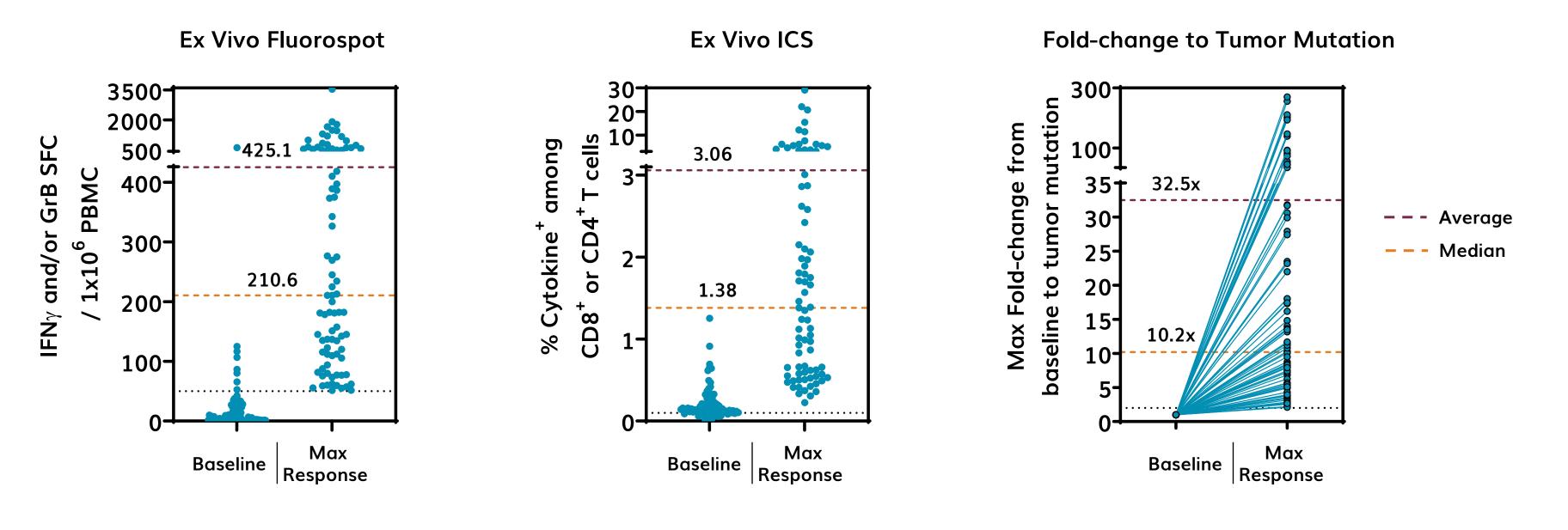
Response to mKRAS variants

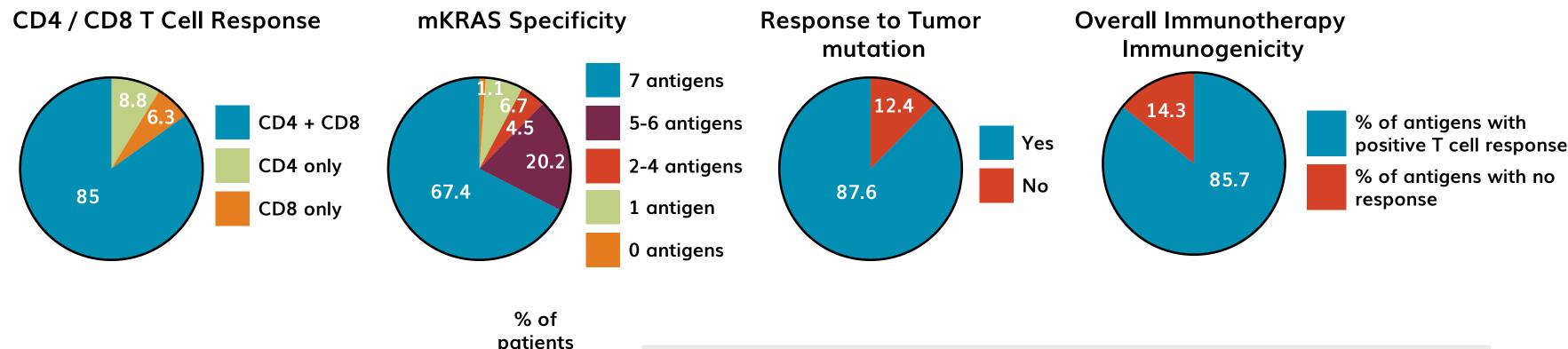
Fold change from baseline

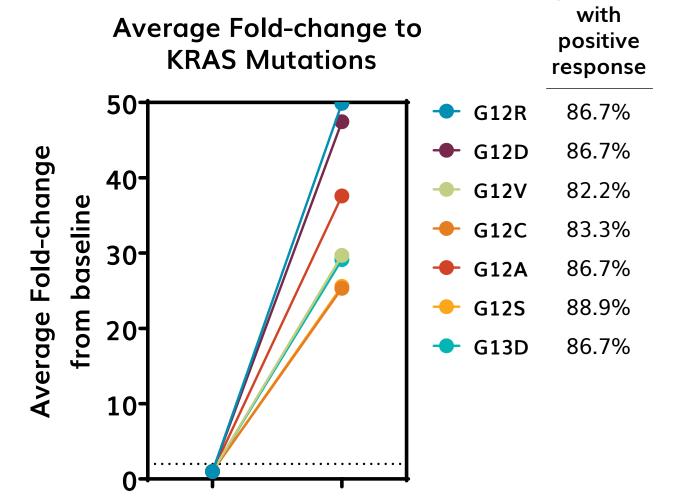

CD4 + CD8 T cells

2025; https://doi.org/10.1038/s41591-025-03876-4

Acknowledgements We are grateful to the patients who participated in the study, their families, and the investigators and staff at the participating institutions.


9. Pant S, et al. **Nature Medicine**. 2024; 30: 531-542


mKRAS-specific T Cell Responses in ELI-002 7P Immunized Patients

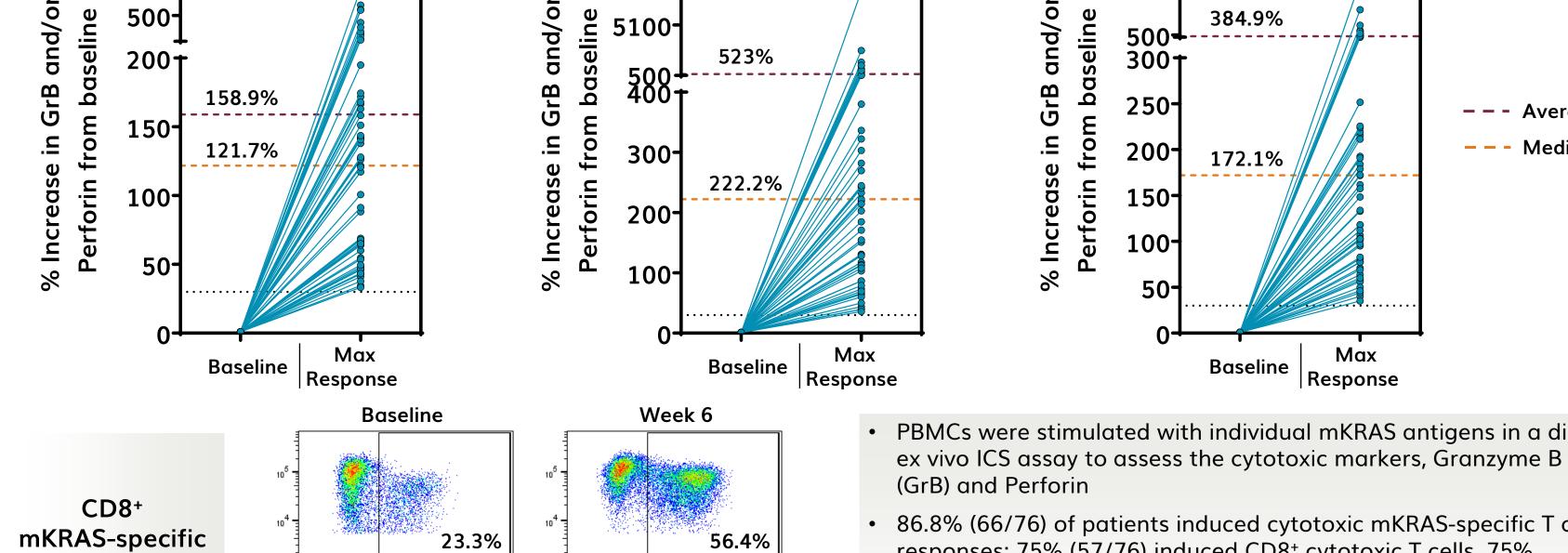


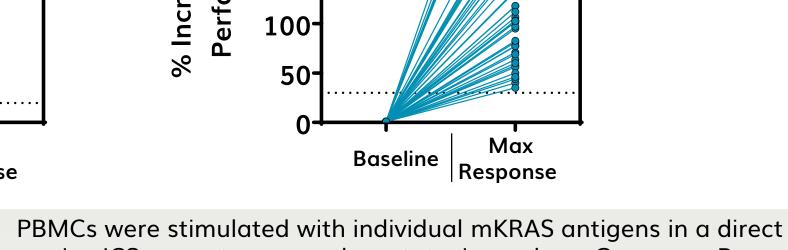
- 96 patients were randomized to ELI-002 7P and 90 patients had evaluable baseline and post-treatment PBMC timepoints
- T cells detectable by standard direct ex vivo Fluorospot and flow cytometry, with no expansion required
- 98.9% (89/90) of patients had mKRAS-specific T cell responses
- 145.3x average fold-change in T cell numbers from baseline (median 44.3; range 2.13-1310x)
- 80% (72/90) of patients had max T cell fold-change responses above 9x over baseline, which correlated with clinical activity in two previous Phase 1 trials^{9,13-14}

ELI-002 7P Generated Robust mKRAS-specific T cell Responses

Consistent CD4 + CD8 T cell Responses:

- 85% CD4 + CD8 response rate (compared to 75.0% in Phase 1) Induction of combined CD4 and CD8 T cell responses correlated with
- clinical activity in previous Phase 1 trial Consistent Responses to all included mKRAS antigens:
- 67.4% response rate for all 7 mKRAS antigens (compared to 50.0% in
- >80% Response Rate for each individual mKRAS antigen
- Consistent Responses to Patient-specific mKRAS Tumor antigen: • 87.6% response rate to patient tumor antigen (compared to 83.3% in
- Phase 1) Consistent Overall Immunotherapy Immunogenicity:
- Positive T cell responses to 85.7% (540/630) of immunotherapy antigens (compared to 66.7% in Phase 1)


AMPLIFY-7P Phase 2: Immunogenicity Methods

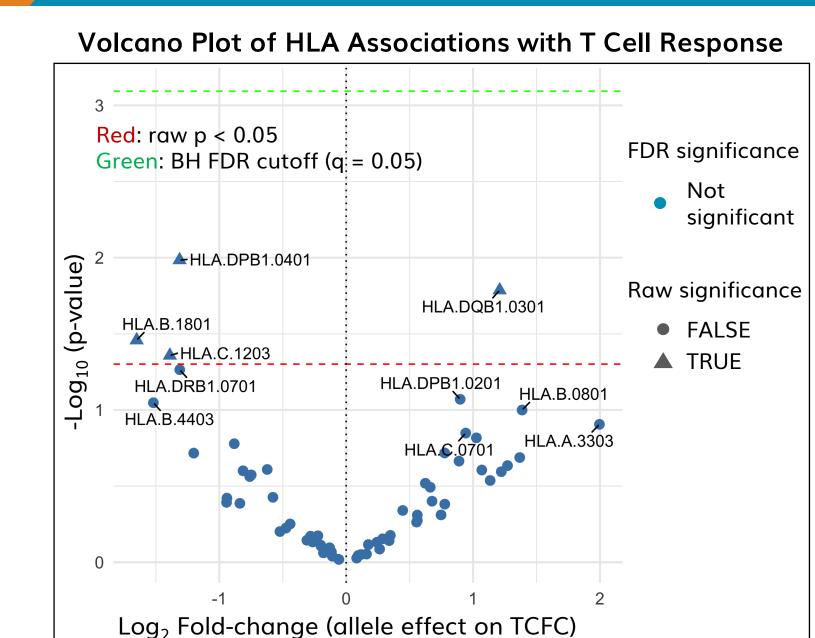

- Immunogenicity of ELI-002 7P was assessed using longitudinally collected peripheral blood from 90 immunogenicity evaluable patients to assess specificity, polyfunctionality, and antigen breadth.
- PBMCs from each patient were individually stimulated with overlapping peptides for each of the seven mKRAS antigens (G12R, G12D, G12V, G12C, G12A, G12S and G13D) for evaluation of mKRAS-specific T cell responses using direct ex vivo assays.
- T cell responses and polyfunctionality were determined by a direct ex vivo IFNγ/Granzyme B (GrB) Fluorospot, where a positive immune response was defined as >2-fold over baseline and at least 50 SFC per million PBMCs.
- Polyfunctionality and phenotype of patient T cells were further characterized using an ex vivo intracellular cytokine staining (ICS) assay where responder populations were defined as >2-fold over baseline and a frequency of at least 0.1% Cytokine+. The ICS assay included markers for CD3, CD4, CD8, Memory (CCR7, CD45RA), cytokines (IFN γ , TNF α , IL2), cytolysis (GrB, Perforin), activation (CD137, CD154), and proliferation (Ki67). A positive cytolytic response (GrB and/or Perforin+) was defined as ≥ 30% increase over baseline and a frequency of at least 1.0% Cytolytic+.
- Associations between HLA alleles and log₁₀-transformed maximum T cell fold change (TCFC) were first assessed using ordinary least squares linear regression. Models included HLA allele dosage as the primary predictor. To account for the non-normal, strictly positive distribution of TCFC, parallel analyses were performed using generalized linear models (glm()) in R with a Gamma error family and log link. Regression coefficients were exponentiated to represent multiplicative changes (fold-changes) in the expected TCFC per allele copy. For each allele, nominal p-values were adjusted for multiple testing using the Benjamini-Hochberg (BH) procedure to control the false discovery rate (FDR).

Immune Response Consistent with Observations in Phase 1 Trials of ELI-002

	ELI-002 2P	ELI-002 7P	ELI-002 7P	ELI-002 7P
	(Nature Medicine)	(4.9 mg)	All (1.4 mg & 4.9 mg)	(4.9 mg)
	Phase 1 (n=25)	Phase 1 (n=7)	Phase 1 (n=12)	Phase 2 (n=90)
atients	MRD+ only	MRD+ only	MRD+ only	MRD+ & MRD-
nKRAS T Cell Response				
T cell Response Rate (%, n)	84% (21/25)	100% (7/7)	100% (12/12)	99% (89/90)
Average Fold Change ¹	58.6x	113.8x	71.1x	145. 3x
Median Fold Change¹ (range)	16.4x (2.1x to 423x)	113.3x (9.5x to 351x)	18.5x (4.2x to 351x)	44.3x (2.13x to 1310x)
Threshold Above Which Clinical Activity was Correlated (% of Patients Above Threshold)	9.17x (68% above 9.17x) 12.75x (52% above 12.75x)	ND	9.5x (75% above 9.5x)	TBD (80% above 9.5x)
CD4 + CD8 T cell Response ²	70.6%	85.7%	75.0%	85.0%
Response to 7 mKRAS Antigens ¹	57.1%	71.4%	50.0%	67.4%
Response to Patient Tumor Antigen ¹	81.0%	100%	83.3%	87.6%
Overall Antigen Response Rate (%, n) ³	74.0% (37/50)	79.6% (39/49)	66.7% (56/84)	85.7% (540/630)

ELI-002 7P Treatment Amplifies mKRAS-specific Cytotoxic CD4⁺ and CD8⁺ T cells Cytotoxic response Cytotoxic response **Cytotoxic response** to CD4⁺ T cells to CD8+ T cells to Tumor Mutation

384.9%


172.1%

– – - Average

--- Median

- 86.8% (66/76) of patients induced cytotoxic mKRAS-specific T cell responses; 75% (57/76) induced CD8+ cytotoxic T cells, 75% (57/76) induced CD4+ cytotoxic T cells and 63.2% (48/76) induced both CD4⁺ and CD8⁺ cytotoxic T cells 142% increase
 - 78.9% (60/75) of patients induced cytotoxic T cells to their specific KRAS tumor mutation

No Association Between HLA Type and ELI-002 7P Induced T cell Response

→ Perforin

cytotoxic T cells

- Blood was collected from each patient at baseline for high resolution HLA typing by NGS (n = 89 ELI-002 7P immunized patients).
- A two-variable analysis of maximum T cell fold-change (TCFC) versus the presence of various HLA alleles was performed, highlighting alleles with FDR < 0.05. Analyses were restricted to alleles with a carrier frequency $\geq 5\%$ (≥ 5 patients) to reduce instability from sparse data.
- No associations were seen between HLA allele and T cell fold-change (either increased or decreased T cell response), indicating that patient HLA background was not associated with mKRAS-specific T cell response induced by ELI-002 7P.
- The 89 ELI-002 7P treated patients had very diverse HLA Class I and Class II backgrounds, with 1132 unique HLA alleles out of 1398 total HLA alleles in assessed patients.

Lymph node-targeted mKRAS specific cancer immunotherapy ELI-002 7P generated robust T cell responses in ongoing randomized Phase 2 AMPLIFY-7P trial:

- Robust expansion of mKRAS-specific T cells
- Consistent CD4 + CD8 T cell responses

- Consistent responses to patient-specific mKRAS tumor antigen
- Consistent overall immunotherapy immunogenicity
- Increased CD4⁺ and CD8⁺ mKRAS-specific cytotoxic T cells after immunization with ELI-002 7P
- Disease-free survival final analysis expected in Q4 2025; correlation of DFS/OS to T cell responses
- will be assessed Phase 3 will be a randomized, blinded trial; primary endpoint will be investigator assessed DFS using modified RECIST (new lesions confirmed by biopsy/imaging)

Consistent responses to all included mKRAS antigens No associations between HLA allele and mKRAS-specific T cell fold-change